skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cappon, Trevor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Discovery and classification of motifs (repeated patterns) and discords (anomalies) in time series is fundamental to many scientific fields. These and related problems have effectively been solved for offline analysis of time series; however, these approaches are computationally intensive and do not lend themselves to streaming time series, such as those produced by IoT sensors, where the sampling rate imposes real-time constraints on computation and there is strong desire to locate computation as close as possible to the sensor. One promising solution is to use low-cost machine learning models to provide approximate answers to these problems. For example, prior work has trained models to predict the similarity of the most recently sampled window of data points to the time series used for training. This work addresses a more challenging problem, which is to predict not only the “strength” of the match, but also the relative location in the representative time series where the strongest matching subsequences occur. We evaluate our approach on two different real world datasets; we demonstrate speedups as high as about 30x compared to exact computations, with predictive accuracy as high as 87.95%, depending on the granularity of the prediction. 
    more » « less